skip to main content


Search for: All records

Creators/Authors contains: "Schalles, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Salt marshes play a crucial role in coastal biogeochemical cycles and provide unique ecosystem services. Salt marsh biomass, which can strongly influence such services, varies over time in response to hydrologic conditions and other environmental drivers. We used gap-filled monthly observations ofSpartina alternifloraaboveground biomass derived from Landsat 5 and Landsat 8 satellite imagery from 1984-2018 to analyze temporal patterns in biomass in comparison to air temperature, precipitation, river discharge, nutrient input, sea level, and drought index for a southeastern US salt marsh. Wavelet analysis and ensemble empirical mode decomposition identified month to multi-year periodicities in both plant biomass and environmental drivers. Wavelet coherence detected cross-correlations between annual biomass cycles and precipitation, temperature, river discharge, nutrient concentrations (NOxand PO43–) and sea level. At longer periods we detected coherence between biomass and all variables except precipitation. Through empirical dynamic modeling we showed that temperature, river discharge, drought, sea level, and river nutrient concentrations were causally connected to salt marsh biomass and exceeded the confounding effect of seasonality. This study demonstrated the insights into biomass dynamics and causal connections that can be gained through the analysis of long-term data.

     
    more » « less
  2. Abstract

    The development of algorithms for remote sensing of water quality (RSWQ) requires a large amount ofin situdata to account for the bio-geo-optical diversity of inland and coastal waters. The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. In addition, at least one co-located water quality measurement of chlorophylla, total suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The data were contributed by researchers affiliated with 59 institutions worldwide and come from 450 different water bodies, making GLORIA thede-factostate of knowledge ofin situcoastal and inland aquatic optical diversity. Each measurement is documented with comprehensive methodological details, allowing users to evaluate fitness-for-purpose, and providing a reference for practitioners planning similar measurements. We provide open and free access to this dataset with the goal of enabling scientific and technological advancement towards operational regional and global RSWQ monitoring.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Water quality measures for inland and coastal waters are available as discrete samples from professional and volunteer water quality monitoring programs and higher-frequency, near-continuous data from automated in situ sensors. Water quality parameters also are estimated from model outputs and remote sensing. The integration of these data, via data assimilation, can result in a more holistic characterization of these highly dynamic ecosystems, and consequently improve water resource management. It is becoming common to see combinations of these data applied to answer relevant scientific questions. Yet, methods for scaling water quality data across regions and beyond, to provide actionable knowledge for stakeholders, have emerged only recently, particularly with the availability of satellite data now providing global coverage at high spatial resolution. In this paper, data sources and existing data integration frameworks are reviewed to give an overview of the present status and identify the gaps in existing frameworks. We propose an integration framework to provide information to user communities through the the Group on Earth Observations (GEO) AquaWatch Initiative. This aims to develop and build the global capacity and utility of water quality data, products, and information to support equitable and inclusive access for water resource management, policy and decision making. 
    more » « less
  4. null (Ed.)
    The eastern oyster ( Crassostrea virginica ) is an important proxy for examining historical trajectories of coastal ecosystems. Measurement of ~40,000 oyster shells from archaeological sites along the Atlantic Coast of the United States provides a long-term record of oyster abundance and size. The data demonstrate increases in oyster size across time and a nonrandom pattern in their distributions across sites. We attribute this variation to processes related to Native American fishing rights and environmental variability. Mean oyster length is correlated with total oyster bed length within foraging radii (5 and 10 km) as mapped in 1889 and 1890. These data demonstrate the stability of oyster reefs despite different population densities and environmental shifts and have implications for oyster reef restoration in an age of global climate change. 
    more » « less
  5. null (Ed.)
  6. Abstract

    Understanding the complex and unpredictable ways ecosystems are changing and predicting the state of ecosystems and the services they will provide in the future requires coordinated, long‐term research. This paper is a product of a U.S. National Science Foundation funded Long Term Ecological Research (LTER) network synthesis effort that addressed anticipated changes in future populations and communities. Each LTER site described what their site would look like in 50 or 100 yr based on long‐term patterns and responses to global change drivers in each ecosystem. Common themes emerged and predictions were grouped into state change, connectivity, resilience, time lags, and cascading effects. Here, we report on the “state change” theme, which includes examples from the Georgia Coastal (coastal marsh), Konza Prairie (mesic grassland), Luquillo (tropical forest), Sevilleta (arid grassland), and Virginia Coastal (coastal grassland) sites. Ecological thresholds (the point at which small changes in an environmental driver can produce an abrupt and persistent state change in an ecosystem quality, property, or phenomenon) were most commonly predicted. For example, in coastal ecosystems, sea‐level rise and climate change could convert salt marsh to mangroves and coastal barrier dunes to shrub thicket. Reduced fire frequency has converted grassland to shrubland in mesic prairie, whereas overgrazing combined with drought drive shrub encroachment in arid grasslands. Lastly, tropical cloud forests are susceptible to climate‐induced changes in cloud base altitude leading to shifts in species distributions. Overall, these examples reveal that state change is a likely outcome of global environmental change across a diverse range of ecosystems and highlight the need for long‐term studies to sort out the causes and consequences of state change. The diversity of sites within the LTER network facilitates the emergence of overarching concepts about state changes as an important driver of ecosystem structure, function, services, and futures.

     
    more » « less